Rewriting Systems and Embedding of Monoids in Groups
نویسنده
چکیده
In this paper, a connection between rewriting systems and embedding of monoids in groups is found. We show that if a group with a positive presentation has a complete rewriting system R that satisfies the condition that each rule in R with positive left-hand side has a positive right-hand side, then the monoid presented by the subset of positive rules from R embeds in the group. As an example, we give a simple proof that right angled Artin monoids embed in the corresponding right angled Artin groups. This is a special case of the well-known result of Paris that Artin monoids embed in their groups.
منابع مشابه
Relating Rewriting Techniques on Monoids and Rings: Congruences on Monoids and Ideals in Monoid Rings
A rst explicit connection between nitely presented commutative monoids and ideals in polynomial rings was used 1958 by Emelichev yielding a solution to the word problem in commutative monoids by deciding the ideal membership problem. The aim of this paper is to show in a similar fashion how congruences on monoids and groups can be characterized by ideals in respective monoid and group rings. Th...
متن کاملSome Remarks on Nitely Presented Monoids with Automatic Structure
Groups with automatic structure (automatic groups for short) have recently received a lot of attention in the literature. They have been shown to have many nice properties, and consequently it has been asked whether these results can be carried over to monoids with automatic structure. Here we show that there exist nitely presented monoids with automatic structure that cannot be presented throu...
متن کاملRewriting systems and biautomatic structures for Chinese, hypoplactic, and Sylvester monoids
This paper studies complete rewriting systems and biautomaticity for three interesting classes of finite-rank homogeneous monoids: Chinese monoids, hypoplactic monoids, and Sylvester monoids. For Chinese monoids, we first give new presentations via finite complete rewriting systems, using more lucid constructions and proofs than those given independently by Chen & Qui and Güzel Karpuz; we then ...
متن کاملHyperbolicity of monoids presented by confluent monadic rewriting systems
The geometry of the Cayley graphs of monoids defined by regular confluent monadic rewriting systems is studied. Using geometric and combinatorial arguments, these Cayley graphs are proved to be hyperbolic, and the monoids to be word-hyperbolic in the Duncan–Gilman sense. The hyperbolic boundary of the Cayley graph is described in the case of finite confluent monadic rewriting systems.
متن کاملCrystal bases, finite complete rewriting systems, and biautomatic structures for Plactic monoids of types $A_n$, $B_n$, $C_n$, $D_n$, and $G_2$
This paper constructs presentations via finite complete rewriting systems for Plactic monoids of types An, Bn, Cn, Dn, and G2, using a unified proof strategy that depends on Kashiwara’s crystal bases and analogies of Young tableaux, and on Lecouvey’s presentations for these monoids. As corollaries, we deduce that Plactic monoids of these types have finite derivation type and satisfy the homolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Groups Complexity Cryptology
دوره 1 شماره
صفحات -
تاریخ انتشار 2009